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Tumor growth has a number of features in common with a physical process known as molecular beam
epitaxy. Both growth processes are characterized by the constraint of growth development to the body border,
and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approxi-
mate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic
model was introduced in a former paper �C. Escudero, Phys. Rev. E 73, 020902�R� �2006��, and in the present
work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor
growth. We present two-dimensional models that reproduce the experimental observations, and analyze the
unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.
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I. INTRODUCTION

One of the highest mortality rates in developed countries
is due to cancer. For this reason, it is one of the most studied
diseases, however, it is still far from being well understood.
Aside from the intensive medical and biological research, an
increasing number of theoretical models is being introduced
in order to describe some of the fundamental properties of
tumors. One of the most common mathematical approaches
is the use of partial differential equations, which has led to
some interesting results in the field �1�.

A different methodology was used by Brú and co-workers
�2,3�, that employed some tools of fractal geometry, such as
scaling analysis, to characterize the rough interface of grow-
ing solid tumors. They found strong empirical evidence that
a broad class of tumors belong to the same universality class:
the molecular beam epitaxy �MBE� universality class. MBE
is a well known process in physics, in which a crystal surface
grows due to the external input of atoms coming from a
beam directed to the growing surface �4�. This finding al-
lowed them to postulate that tumor dynamics has some fea-
tures in common with MBE, say, �i� a linear growth rate, �ii�
the constraint of growth activity to the outer border of the
tumor or crystal, and �iii� surface diffusion at the growing
edge. All of these features were again tested against experi-
ment with a positive result.

These experimental observations led to a new and very
interesting picture of tumor growth. The usual assumed ex-
ponential growth is replaced by a linear growth, and the dy-
namics is constrained to the peripheral region, because it is
assumed that what happens in the core of the tumor has little
effect on growth. Surface diffusion has been identified as a
mechanism for favoring tumor growth. The host tissue exerts
pressure on solid tumors which opposes their growth, but
surface diffusion drives the tumor cells to the concavities of
the interface, keeping the number of neighboring cells that
belong to the host tissue to a minimum. Since these cells are
responsible for the pressure exerted on the tumor, surface
diffusion minimizes the pressure on the interface, and favors
the propagation of the tumor �2,3�.

This theoretical description of a solid tumor was used to
develop a strategy to stop the growth �5�. Suggested by the
above findings, Brú et al. proposed that an enhancement of
the pressure on the tumor surface would be able to deceler-

ate, and eventually to stop tumor growth. They performed an
experiment in which they observed the response of the tumor
to an enhancement of the immune response. An increase of
the number of neutrophils shifted the dynamics of the inter-
face from the MBE universality class to the much slower
quenched Edwards-Wilkinson �QEW� universality class, and
to the pinning of the tumor interface �5�. This technique was
later applied to a patient with a terminal cancer, who subse-
quentially improved his state till he finally achieved good
health, possibly due to the applied treatment �6�.

This success has a fundamental importance for the devel-
opment of efficient therapies, and therefore it would be
highly desirable to achieve a good theoretical understanding
of the models used. MBE dynamics is described by the
Mullins-Herring equation �7,8�

�th = − K�4h + F + ��x,t� , �1�

where h is the interface height, K is the surface diffusion
coefficient, and ��x , t� is a Gaussian noise with zero mean
and correlations given by

���x,t���x�,t��� = D��x − x����t − t�� . �2�

This equation was developed to describe crystal growth, so it
assumes that the substrate is planar and does not change its
size in time. This no longer applies to tumors, since they are
approximately spherical and grow linearly in time; both fea-
tures are possibly the main discrepancies between standard
MBE dynamics and the dynamics of tumors �3�. The same
criticism applies to the equation describing QEW dynamics
�4�,

�th = K�2h + F + ��x,h� , �3�

where ��x ,h� is a quenched disorder with zero mean and
correlations given by

���x,h���x�,h��� = D��x − x����h − h�� , �4�

and the function � characterizes the nature of the quenched
disorder.

In a former paper, we developed a stochastic partial dif-
ferential equation describing the same dynamics as Eq. �1�
but with the correct geometrical symmetries �9�. The analysis
of this equation revealed that it was able to reproduce some
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of the fundamental mechanisms of tumor growth found in
experiments �2,3�. In the present work we extend the geo-
metrical approach to tumor growth by developing and ana-
lyzing spherically symmetric equations describing both MBE
and QEW dynamics. These equations model the behavior
found experimentally in the �1+1�-dimensional case �2,3,5�,
and allow us to predict what would happen in the more re-
alistic and unexplored case of �2+1�-dimensional geometry.
We also derive the equations using a more systematic tech-
nique, that allows us to conjecture what are the geometrical
principles that drive tumor growth.

II. EXPANSION FROM A POTENTIAL

In general, a planar stochastic growth equation may be
written in the form

�h�x,t�
�t

= G�h�x,t�� + ��x,t� , �5�

where G is the deterministic growth term and � is the noise.
If we want the mean field equation to describe a conservative
dynamics �as for instance a diffusion�, then the deterministic
part must have the form of a continuity equation,

�h�x,t�
�t

= − � · j�x,t� , �6�

where the macroscopic current j�x , t� describes the flux of
cells on the surface. The current j�x , t� arises in general from
differences in the local pressure p�x , t� as argued before, fol-
lowing the law

j�x,t� = ���x,t� , �7�

where � is defined as a pressure potential. We can perform
the expansion of � in terms of the pressure

��x,t� = − A1p�x,t� + A2�
2p�x,t� + ¯ . �8�

Since the difference in pressure comes mainly from the dif-
ferences in height of the different parts of the interface, we
may assume that p�h. Finally, we can write the determinis-
tic part of the evolution equation as

�h�x,t�
�t

= A1�
2h − A2�

4h + ¯ , �9�

where we can identify the terms present in the drifts of both
Eqs. �1� and �3�.

The equation of growth of a general Riemannian surface
reads

�tr��s,t� = n̂�s,t���r��s,t�� + 	� �s,t� , �10�

where the d+1-dimensional surface vector r��s , t�
= �r
�s , t��
=1

d+1 runs over the surface as s= �si�i=1
d varies in a

parameter space �in the following, latin indices vary from 1
to d and greek indices from 1 to d+1�. In this equation n̂
stands for the unitary vector normal at the surface at r�, �
contains a deterministic growth mechanism that causes

growth along the normal n̂ to the surface, and 	� is a random

force acting on the surface. In our case the deterministic part
should include a term modeling cell diffusion in the tumor
border. When surface diffusion occurs to minimize the sur-
face area the corresponding term in the equation is �10�

�s = − K�BLH , �11�

where �BL is the Beltrami-Laplace operator

�BL =
1
	g

�i�	ggij� j� , �12�

gij is the metric tensor, and g is its determinant, �i=� /�si is a
covariant derivative, and H= n̂ ·�BLr� is the mean curvature.
Summation over repeated indices is always assumed along
this work. Finally, the unitary normal vector is given by n̂
=g−1/2�1r�� ¯ ��dr�. The equation of growth can be derived
straightforwardly from here �9�, but since our aim is to un-
derstand the geometrical principles underlying tumor growth,
we write the more general growth equation for those cases in
which the drift can be derived from a potential:

�tr��s,t� = −
1

	g�s�

�V�r��s,t��

�r��s,t�
. �13�

In our case the potential V depends on the mean curvature H
of the interface. This dependence can be expressed in a
power series expansion:

V =
 dds	g�
i=0

N

KiH
i = �

i=0

N

Vi. �14�

From here we can derive straightforwardly the stationary
probability distribution functional P�r�s , t��, which yields the
probability of the interface configuration r�s , t� in the limit
t→�

P�r�s,t�� = N exp�−
V�r�s,t��

D/2
 , �15�

where D is the noise strength and N is the normalization
constant. In this work, we are more interested in the dynami-
cal rather than in the stationary properties of the model, so
we will focus on the stochastic partial differential equation
which describes tumor growth. In the general equation, the
contribution to the drift reads

�i = −
1
	g

n̂ ·
�Vi

�r�
= Ki�Hi+1 − i�BLHi−1 − iHi−1�

j=1

d

 j
2 ,

�16�

where  j are the eigenvalues of the matrix of the coefficients
of the second fundamental form and express the principal
curvatures of the surface �10�.

III. STOCHASTIC EQUATIONS FOR TUMOR GROWTH

In this section we will build the models for describing the
growth of a nontreated tumor. First of all, we will derive the
zeroth, first, and second order terms in the expansion Eq.
�14� in one and two dimensions. The corresponding contri-
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butions to the drift in polar coordinates read �11�

�0�d = 1� =
1

r2

�2r

��2 , �17a�

�1�d = 1� = 0, �17b�

�2�d = 1� = −
1

r4

�4r

��4 , �17c�

�0�d = 2� =
1

r2� �2r

��2 +
1

sin2���
�2r

��2 , �17d�

�1�d = 2� =
2

r3� �2r

��2 +
1

sin2���
�2r

��2 , �17e�

�2�d = 2� = −
1

r4� �4r

��4 +
2

sin2���
�4r

��2��2 +
1

sin4���
�4r

��4 ,

�17f�

where we have linearized the different derivatives of r about
zero and chosen only the most relevant terms in the renor-
malization group sense. Retaining only the linear terms is a
valid approximation whenever sharp changes in the tumor
interface are absent �9�. It is very important to realize that
�1�d=1� vanish identically, since H=1 in d=1. This is a
consequence of the Gauss-Bonnet theorem, which states that
the integral of the Gaussian curvature K on a closed surface
is a constant. Since H=K in d=1, the variation of V1 is zero.
Another important fact is that �1�d�1� is strictly nonlinear
in the derivatives of r in the case of a planar geometry, so it
will never survive after a linearization �10�. We will show
what are the consequences of this in the next sections.

In the case of nontreated tumors, only the �2 term seems
to appear in the dynamics. In this case, we can derive the
following equations describing the tumor interface dynamics
in �1+1� dimensions:

�r

�t
= −

K

r4

�4r

��4 + F +
1
	r

���,t� , �18�

where the noise ��� , t� is Gaussian, with zero mean, and
correlation is given by

����,t�����,t��� = D��� − �����t − t�� , �19�

and �2+1� dimensions

�r

�t
= −

K

r4� �4r

��4 +
2

sin2���
�4r

��2��2 +
1

sin4���
�4r

��4
+ F +

1

r	�sin����
���,�,t� , �20�

where the noise ��� ,� , t� is Gaussian, with zero mean, and
correlation given by

����,�,t�����,��,t��� = D��� − ������ − �����t − t�� ,

�21�

and the noise must be interpreted in the Itô sense. A more
detailed derivation of these equations can be found in Ref.
�9�.

To analyze these equations we will perform a small noise
expansion �12�, where the solution is decomposed as fol-
lows:

r��,t� = R�t� + 	D���,t� , �22�

in the �1+1�-dimensional case, where R is the deterministic
solution, given by R�t�=Ft+R0. The stochastic perturbation
obeys the equation

��

�t
= −

K

�R0 + Ft�4

�4�

��4 +
1

	R0 + Ft
���,t� , �23�

where the noise ��� , t� is Gaussian, with zero mean, and
correlation is given by

����,t�����,t��� = ��� − �����t − t�� . �24�

The discrete Fourier transformed version of this equation
reads

d�n

dt
= −

Kn4

�R0 + Ft�4�n +
1

	R0 + Ft
�n�t� , �25�

where the noise �n�t� is Gaussian, with zero mean, and cor-
relation is given by

��n�t��m�t��� = �2��−1�n,−m��t − t�� , �26�

where �n,−m denotes the Kronecker symbol. The mean value
of the stochastic process obeys the equation

d��n�
dt

= −
Kn4

�R0 + Ft�4 ��n� , �27�

that can be solved to yield

��n�t�� = exp�Kn4

3F
� 1

�R0 + Ft�3 −
1

R0
3���n�0�� . �28�

We can also calculate the two-point correlation function us-
ing standard techniques �13�,
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d��n�t��m�t�� = ��n�t + dt��m�t + dt�� − ��n�t��m�t��

= �d�n�t��m�t�� + ��n�t�d�m�t�� + �d�n�t�d�m�t��

= −
K

�R0 + Ft�4 �n4 + m4���n�t��m�t��dt

+
1

R0 + Ft
�n,−m�2��−1dt , �29�

where we have used the facts that �n�t�= �2��−1/2dWn�t� /dt
and dWn�t�2=dt, and where dWn�t� denotes the increment of
a Wiener process. And thus the two-point correlation func-
tion Cn,m�t�= ��n�t��m�t�� obeys the equation

dCn,m�t�
dt

= −
K

�R0 + Ft�4 �n4 + m4�Cn,m�t� +
�2��−1

R0 + Ft
�n,−m.

�30�

The exact solution of this equation is

Cn,m�t� = exp�−
K�n4 + m4�

3F
� 1

R0
3 −

1

�R0 + Ft�3�
��Cn,m�0� +

�n,−m

6�F
exp�K�n4 + m4�

3FR0
3 

��Ei�−
K�n4 + m4�

3FR0
3  − Ei�−

K�n4 + m4�
3F�R0 + Ft�3�� ,

�31�

where Ei denotes the exponential integral.
In the �2+1�-dimensional case we can perform the expan-

sion

r��,�,t� = R�t� + 	D���,�,t� , �32�

where R�t�=R0+Ft. The stochastic perturbation obeys the
equation

��

�t
= −

K

�R0 + Ft�4� �4�

��4 +
2

sin2���
�4�

��2��2 +
1

sin4���
�4�

��4
+

1

�R0 + Ft�	�sin����
���,�,t� , �33�

which implies

d�n,m

dt
= −

K

�R0 + Ft�4�n4 +
8

3
n2m2 +

8

3
m4�n,m

+
A

R0 + Ft
�n,m�t� , �34�

where A=160F�� /4 �2� / �63��, and F denotes an incomplete
elliptic integral of the first kind �14�. The noise is again
Gaussian, with zero mean, and correlation given by

��n,m�t��p,q�t��� = �2��−2�n,−p�m,−q��t − t�� . �35�

We can derive the equation for the first moment,

d��n,m�
dt

= −
K

�R0 + Ft�4�n4 +
8

3
n2m2 +

8

3
m4��n,m� , �36�

and solve it to obtain

��n,m�t�� = exp�−
K�8m4 + 8m2n2 + 3n4�

9F
� 1

R0
3 −

1

�R0 + Ft�3�
���n,m�0�� . �37�

The equation for the two-point correlation function can be
straightforwardly derived and is

dCn,m,p,q�t�
dt

= −
K

�R0 + Ft�4�n4 +
8

3
n2m2 +

8

3
m4

+ p4 +
8

3
p2q2 +

8

3
q4Cn,m,p,q�t�

+
B

�R0 + Ft�2�n,−p�m,−q, �38�

where B=6400F�� /4 �2�2 / �3969�4���0.03�, and Cn,m,p,q�t�
= ��n,m�t��p,q�t��. The solution to this equation is

Cn,m,p,q�t� = exp�−
K

9F
�8m4 + 8m2n2 + 3n4 + 3p4 + 8p2q2 + 8q4�� 1

R0
3 −

1

�R0 + Ft�3�
��Cn,m,p,q�0� + B�n,−p�m,−q exp� K

9FR0
3 �8m4 + 8m2n2 + 3n4 + 3p4 + 8p2q2 + 8q4�

�

0

t

exp�−
K�8m4 + 8m2n2 + 3n4 + 3p4 + 8p2q2 + 8q4�

9F�F� + R0�3 �F� + R0�−2d�� . �39�

One can see that our exact solutions reveal some interest-
ing characteristics of the growth. The mean value of the
small perturbation decreases in time proving the stability of
the mean field radially symmetric solution, both in one and

two dimensions. The correlation functions give a much more
interesting information. The correlations generated by the
noise are much smaller in the two-dimensional case: not only
is the numerical prefactor smaller, but in the one-dimensional
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case these correlations decrease in time as an exponential
integral, while in the two-dimensional case the decay is
much faster. This means that the effect of the noise is much
stronger in one dimension, while the deterministic dynamics
are more robust in two dimensions, something that might
have serious consequences in tumor therapy, as we will show
below.

IV. GROWTH IN A DISORDERED MEDIUM

In the models commented in the Introduction, it seems
that the disorder is induced by the enlarged amount of neu-
trophils introduced to stop tumor growth. But actually, the
medium in which tumors grow is highly disordered. Tumors
are extensively infiltrated by immune cells which may con-
stitute as much as one-third of its volume. Both the tumor
phenotype and the tumor environment are very heteroge-
neous. The former is the result of accumulating random mu-
tations, variable enviromental selection forces, and perhaps
restriction of proliferate capacity in non-stem-cell compo-
nents of the tumor. In addition, the tumor environment is
extremely heterogeneous primarily due to disordered angio-
genesis and blood flow. These facts suggest that one possible
explanation for the noise term appearing in the equations of
the last section comes from the underlying disorder. In fact,
if we consider Eq. �3� and the corresponding correlations of
the quenched disorder Eq. �4�, we see that for large F the
function h will behave as h�Ft, and assuming that the func-
tion � models short-range correlations �as found experimen-
tally �5�� implies that ��h−h�����t− t��. This means that, far
from the pinning threshold, the role of the disorder is to
induce thermal fluctuations in the dynamics as those found in
Eq. �1�. Physically, this means that a rapidly moving inter-
face samples so many values of the disorder in a small time
interval that the overall effect is that of a time dependent
noise. This implies in turn that the intensity of the noise is
proportional to the disorder, and thus an enhancement in the
immune response corresponds to a stronger noise in Eqs.
�18� and �20�, while the tumor is still in a state far enough
from the pinning threshold.

Not only the noise, but also the diffusion terms vary from
Eq. �1� to Eq. �3�. We can understand this effect if we sup-
pose the terms in the expansion Eq. �14� dependent on the
disorder. Assuming that K0�D and that K2 is independent of
D, where D is the intensity of the disorder, then we find that
the K0 term is the most relevant in high disorder, while K2
would be the most important term in other case. We can use
these facts to build a more general model of tumor growth in
the �1+1�-dimensional setting,

�r

�t
=

K0

r2

�2r

��2 −
K2

r4

�4r

��4 + F +
1
	r

���,r� , �40�

where the correlations of the quenched disorder are given by

����,r�����,r��� = ��� − �����r − r�� . �41�

In weak disorder, this equation reduces to Eq. �18�, because
the disorder behaves as a thermal noise and the term propor-
tional to K0 loses its importance, as explained above.

In the �2+1�-dimensional case the situation is different. In
opposition to the former case, now the term proportional to
K1 does not vanish identically as shown in Sec. II. Taking
into account this fact, we can again build the more general
equation for tumor growth, that reads

�r

�t
=

K0

r2 � �2r

��2 +
1

sin2���
�2r

��2 +
2K1

r3 � �2r

��2 +
1

sin2���
�2r

��2
−

K2

r4 � �4r

��4 +
2

sin2���
�4r

��2��2 +
1

sin4���
�4r

��4 + F

+
1

r	�sin����
���,�,r� , �42�

where the correlations of the quenched disorder are given by

����,�,r�����,��,r��� = ��� − ������ − �����r − r�� .

�43�

Now, it is our goal to understand what differences appear
in the evolution of the equations for tumor growth in differ-
ent dimensions, mainly due to the presence of the K1 term in
the �2+1�-dimensional model. For this, we will study the
deterministic counterparts of Eqs. �40� and �42�. In the case
of �1+1� dimensions we have

�r

�t
=

K0

r2

�2r

��2 −
K2

r4

�4r

��4 + F , �44�

which admits the radially symmetric solution r�t�=R0+Ft. If
we perform the linear stability analysis of this solution by
adding a small perturbation �, we obtain the equation

d�n

dt
= − � K0n2

�R0 + Ft�2 +
K2n4

�R0 + Ft�4�n, �45�

that can be solved to yield

�n�t� = exp�K2n4

3F
� 1

�R0 + Ft�3 −
1

R0
3

+
K0n2

F
� 1

R0 + Ft
−

1

R0
��n�0� . �46�

This reveals that all the Fourier modes n�0 of the solution
are linearly stable for t�0. The n=0 mode is marginal, but
this is unimportant because it implies perturbations homoge-
neous in �.

To clarify how the different terms in Eq. �46� act on a
perturbed circular form, we have depicted the evolution in
time of one such perturbation under the two different re-
gimes in Figs. 1 and 2. In Fig. 1 we used as initial condition
r�� ,0�=10+9 cos�12��, and we represented the evoluted in-
terface for t=5, assuming that K0=0 and the rest of the pa-
rameters are equal to unity. In Fig. 2 we show the evolution
of the same initial condition under the same conditions with
the exception of the values of the parameters K0 and K2, that
are now exchanged: K0=1 and K2=0. From these figures it is
clear that the K2 growth regime restores the circular form
much faster than the K0 one. This feature is not universal: for
perturbations with low Fourier modes acting on a form with
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a large enough radius the situation is the opposite. However,
realistic situations imply that the Fourier modes should be
very high for a large radius, because, as we said before, the
correlations induced by external perturbations �as for in-
stance the neutrophils� are short ranged. This shows that,
when a tumor shifts its universality class from the MBE to

the QEW universality class, it loses effectivity in minimizing
its curvature, a feature that, according to the experiments
performed in Ref. �5�, will eventually lead to the pinning of
its interface. It is important to note that the evolutions of the
perturbation shown in the figures follow the linear restoring
law Eq. �46�, but that this law is used far from its region of
validity �the initial perturbation is too large to consider it as
linear�. In consequence, these figures should be interpreted as
a graphical explanation of the different terms in Eq. �46�, but
not a description of the deterministic evolution of the tumor
interface for such large perturbations.

On the other hand, the equation corresponding to the
�2+1�-dimensional case reads

�r

�t
=

K0

r2 � �2r

��2 +
1

sin2���
�2r

��2 +
2K1

r3 � �2r

��2 +
1

sin2���
�2r

��2
−

K2

r4 � �4r

��4 +
2

sin2���
�4r

��2��2 +
1

sin4���
�4r

��4 + F , �47�

which again admits the solution r�t�=R0+Ft. If we perform
the linear stability analysis we arrive at the equation

d�n,m

dt
= −

K0

�Ft + R0�2�n2 +
4

3
m2�n,m

− 2
K1

�Ft + R0�3�n2 +
4

3
m2�n,m

−
K2

�Ft + R0�4�n4 +
8

3
m2n2 +

8

3
m4�n,m, �48�

that can be solved to yield

�n,m�t� = exp�−
K2�8m4 + 8m2n2 + 3n4�

9F
� 1

R0
3 −

1

�R0 + Ft�3
−

4m2 + 3n2

3F
�K1

R0
2 −

K1

�R0 + Ft�2 +
K0

R0
−

K0

R0 + Ft
�

��n,m�0� , �49�

and we see again that all the Fourier modes, except
m=n=0, are stable for t�0. The case m=n=0 is marginal,
but it is unimportant since it implies perturbations homoge-
neous in � and �.

The effect of the K1 term can be immediately understood
by regarding Eqs. �46� and �49�. It is an additional mecha-
nism for “dissipating” curvature. When a stochastic pertur-
bation drives the solution away from the radially symmetric
form, then this perturbation behaves as stated by these two
equations. As can be clearly seen, the restoring of the sym-
metric form is faster in the �2+1�-dimensional case due to
the presence of the K1 term.

V. CONCLUSIONS

Motivated by the successful research on tumor growth by
Brú and co-workers �2,3,5,6�, we have introduced theoretical
models able to reproduce some of the features found in these
experiments. We have also analyzed these models in order to
better understand what is happening in the physical phenom-

FIG. 1. Evolution of the initial condition r�� ,0�
=10+9 cos�12�� �inner figure� given by Eq. �46�. All the values of
the parameters are set equal to unity, with the exception of K0=0.
The outer figure represents the surface at t=5.

FIG. 2. Evolution of the initial condition r�� ,0�
=10+9 cos�12�� �inner figure� given by Eq. �46�. All the values of
the parameters are set equal to unity, with the exception of K2=0.
The outer figure represents the surface at t=5.
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enon. The models were derived as an expansion from a po-
tential, which resulted a power series expansion in the mean
curvature of the surface. The effect of the deterministic part
of the equations is thus to reduce the mean curvature and its
different powers, and this way to minimize the pressure in
the tumor border and to favor tumor growth.

Since all the experiments were performed with two-
dimensional tumors, it is important to develop theoretical
models that represent what happens in these experiments,
and to extend them to the three-dimensional case. This way
we will get an insight of the evolution of the more realistic
three-dimensional system, and we can derive conclusions
that can be used as a guide for future experiments.

We have analyzed the effect of stochasticity in these equa-
tions, and we have shown that stochastic effects are much
less relevant in the case of �2+1�-dimensional growth. Also,
we have discussed the possible origin of the noise on the
underlying disorder of the system, and how its intensity can
be enhanced by increasing the number of immune cells in the
tumor environment. This shows that the strategy of enhanc-
ing the immune response in order to stop tumor growth
should be less effective in the case of three-dimensional tu-
mors. In addition to this, we have shown that a different term
�the K1 term� appeared with higher dimensionality. The ori-
gin of this term is very interesting, because it vanishes iden-
tically in one dimension for any geometry and in any dimen-
sion in the case of a planar geometry. Thus it appeared in the
dynamics of the growing tumor as a combined effect of di-
mensionality and geometry. This term contributes to mini-

mize the pressure and to favor tumor growth. Since it is
present only in the three-dimensional case, it is another
mechanism that helps tumor propagation in this dimension-
ality, which leads us to conclude that it is much more diffi-
cult to stop a three-dimensional tumor than to stop its two-
dimensional counterpart.

All along this work we have assumed that there are no
overhangs in the interface in the radial direction, in such a
way that a single valued solution of the corresponding sto-
chastic growth equation makes sense for representing the in-
terface evolution. There are, however, situations for which
we cannot assume this. An interesting problem for future
work is to derive a continuum model allowing overhangs and
an arbitrary topology of the growing interface. Similar mod-
els were developed in a different context �15,16�, and allow a
more detailed description of a complex growth phenomenon.
In this same direction, and taking into account that tumor
growth is very likely to be mathematically considered a mov-
ing boundary value problem, it may be possible to adapt the
mathematical treatment for viscous flows to this situation
�17�. Indeed, the problem of the displacement of a more vis-
cous fluid by a less viscous one might present methodologi-
cal similarities to that of the growing tumor.
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